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In the present paper we develop an algorithm to solve the time dependent Ginzburg-Landau equations, by
using the link variables technique, for circular geometries. In addition, we evaluate the Helmholtz and Gibbs
free energy, the magnetization, and the number of vortices. This algorithm is applied to a circular sector. We
evaluate the superconduting-normal magnetic field transition, the magnetization, and the superconducting
density. Our results point out that, as we reduce the superconducting area, the nucleation field increases.
Nevertheless, as the angular width of the circular sector goes to small values the asymptotic behavior is
independent of the sample area. We also show that the value of the first nucleation field is approximately the
same independently of the form of the circular sector. Furthermore, we study the nucleation of giant and
multivortex states for the different shapes of the present geometry.
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I. INTRODUCTION

The advances in the technologies of nanofabrication in the
last few decades allowed intensive investigation efforts in
nanostructured superconductors, both in the experimental
and theoretical fronts.1,2 It is well-known that, for very con-
fined geometries, the superconducting-normal �SN� magnetic
field transition is increased extraordinarily. It was experimen-
tally observed that for an Al square of very thin film with a
size of a few micrometers the upper critical field Hc2�T� can
be increased up to 3.32 with the inclusion of defects, 2.01
larger than the usual value of Hc2�T�.2 Furthermore, numeri-
cal simulations carried out in a circular wedge �see Ref. 3
and references therein� have shown that by keeping the area
of this geometry constant, the SN transition field is a uniform
increasing function with decreasing angular width � and di-
verges as the angle goes to zero.

Another important issue in confined geometries is the oc-
currence of giant vortices. The experimental observation of a
giant vortex in a mesoscopic superconductor is still a contro-
versial issue. Through multi-small-tunnel-junction measure-
ments in an Al thin disk film, Kanda et al.4 have argued that,
as the vorticity increases, giant vortex configuration will oc-
cur. On the other hand, scanning superconducting quantum
interference device �SQUID� microscopy on Nb thin film,
both square and triangle, cannot guarantee giant vortex con-
figurations, at least for low vorticity.5,6 In other words, the
authors of these references do not have sufficient resolution
in some pictures to affirm that giant configurations are
present. Despite this minor difference in experimental obser-
vations, most of the works indicate the occurrence of giant
vortices in confined geometries. A recent work on a Bitter
pattern decoration experiment strongly suggests the forma-
tion of giant vortices in small superconducting disks.7

Early numerical simulations of the present authors8 have
shown the dynamic of the nucleation of a giant and multi-
vortex state before they set into an equilibrium configuration
for a square geometry. The results of these simulations also
reenforce the existence of giant vortex states as well as the
time dependence of the nucleation of multi- and giant vortex
systems.

It is well-known that the phenomenology of superconduc-
tivity can be described by the time dependent Ginzburg-
Landau �TDGL� equations.10 The present contribution uses
the TDGL approach to address the issues above, namely, of
the nucleation of vortices in confined geometries and the
behavior of the transition field for a deformable geometry.
For this, we have chosen a circular sector �see Fig. 1�, where
we can arbitrarily change its shape. To our best knowledge,
the discretization of the TDGL equations, by using the link
variables technique, has been done only in rectangular
coordinates.11,12 So, we will extend this algorithm to circular
geometries by using polar coordinates. Our procedure makes
it possible to generalize the algorithm to any geometry. The
key point in such a problem is how to write the auxiliary
fields appropriately according to the system of coordinates,
making the development of the present algorithm a specific
algorithm necessary. Otherwise, the purpose of generaliza-
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FIG. 1. The computational mesh in polar coordinates used for
the evaluation of �i,j ��, vertex point�; hz,i,j and Li,j ��, cell point�;
A�,i,j and U�,i,j ��, link point�; and A�,i,j and U�,i,j ��, link point�.
The superconducting domain is delimited by the dashed line ��SC,
and superconducting layer is surrounded by the solid line ��. Other
details of the figure are described in Sec. III.
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tion will not be achieved. We anticipate that the two main
points of the present work will show that: �a� as we decrease
the area of the circular sector, the transition field may in-
crease for large angles, but all the curves will collapse into
the asymptotic behavior H /Hc2�T�=�3 /�; and �b� only the
confinement of vortices is not sufficient to obtain a giant
vortex state, but also the geometry is very important to favor
the nucleation of such configurations; by confinement we
mean the space available for the nucleation of vortices inside
the sample. The geometry we have chosen does not allow us
to assure clearly the nucleation of the giant vortex. For a
circular sector of several angular widths, ranging from 45° to
180°, having the same area as a disk, a square, and a triangle,
we did not observe the occurrence of a giant vortex as pre-
vious numerical simulations have predicted for those
geometries.9 In addition, we will show that the criterion used
for nucleation of a giant vortex may lead us to nonconclusive
pictures, at least for the geometry under the present investi-
gation.

The paper is outlined as follows. In Sec. II we write the
TDGL equations in a gauge invariant form by using the aux-
iliary field in polar coordinates. In Sec. III we develop the
algorithm we use to solve the TDGL equations: we define the
mesh used to discretize the TDGL equations for a circular
sector, the discrete variables which are evaluated in the
mesh, the boundary conditions, and, finally, the important
physical quantities which will be extracted from the numeri-
cal setup are determined. In Sec. IV we present and discuss
the results of the numerical simulations for certain param-
eters of a superconducting circular sector.

II. TDGL EQUATIONS

The properties of the superconducting state are usually
described by the complex order parameter �, for which the
absolute square value ���2 represents the superfluid density,
and the vector potential A, which is related to the local mag-
netic field as h=��A. If either a transport current or an
external electric field is present, the scalar potential � must
be taken into account. These quantities are determined by the
TDGL equations, which in the nondimensional version are
given by

��

�t
+ i�� = − D · D� + �1 − T���1 − ���2� ,

	� �A

�t
+ ��� = �1 − T�Re��̄D�� − 
2 � � h , �1�

where T is the temperature in units of the critical tempera-
ture; lengths are in units of ��0�, the coherence length is at
zero temperature, and fields in units of Hc2�0�, the upper
critical field is at zero temperature; 	 is the ratio between the
relaxation times of the vector potential and the order param-
eter; 
 is the Ginzburg-Landau parameter which is material
dependent; the operator D=−i�−A; Re indicates the real
part of a complex variable and the overbar means the com-
plex conjugation �for more details, see Refs. 8, 11, and 12�.
Here, we will neglect the z dependence on the order param-

eter. This is valid only if the system is infinite along the z
direction. We could also apply the z invariant approach to the
very special case of a very thin film of thickness d�1. It has
been argued in Ref. 13 that, if the system is finite in the z
direction, the order parameter can be expanded in a Fourier
series satisfying the appropriate boundary conditions. In this
same reference, it is shown that the main contribution to the
order parameter corresponds to the zero wave-vector term of
the series, provided that d�1. This term is just the two-
dimensional solution of the first Ginzburg-Landau equation,
which is invariant along the z direction. However, in this
case, 
2 is replaced by an effective Ginzburg-Landau param-
eter 
ef f

2 =
2 /d �for instance, see Refs. 14 and 15�. Therefore
this approximation could give us some information of the
physics involved in a real system, provided that d�1. The
generalization to a system of arbitrary thickness should not
present any difficulty.

It is convenient to introduce the auxiliary vector field U
= �U� ,U�� in polar coordinates, which is defined by

U���,�� = exp�− i	
�0

�

A���,��d�� ,

U���,�� = exp�− i	
�0

�

A���,���d�� , �2�

where ��0 ,�0� is an arbitrary reference point. For the sake of
brevity we omit the time dependence on the fields.

Notice that

�U�

��
= − iA�U�,

1

�

�U�

��
= − iA�U�, �3�

and that

D�� = − iŪ�

��U���
��

, D�� = − i
Ū�

�

��U���
��

. �4�

Upon using these two last equations recursively, we ob-
tain

D�
2� = − Ū�

�2�U���
��2 , D�

2� = −
Ū�

�2

�2�U���
��2 . �5�

As a consequence, we obtain for the kinetic term in the
first TDGL equation

D · D� = D�
2� + D�

2� −
i

�
D�� = −

Ū�

�

�

��

�

��U���
��

�
−

Ū�

�2

�2�U���
��2 . �6�

From Eqs. �4�, it can also be easily proved that
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Re��̄D��� = Im
Ū��̄
��U���

��
�, Re��̄D���

= Im
 Ū��̄

�

��U���
��

� , �7�

where Im indicates the imaginary part of a complex variable.
Finally, by using Eqs. �6� and �7�, the TDGL equations of

Eq. �1� can be rewritten as

��

�t
+ i�� =

Ū�

�

�

��

�

��U���
��

� +
Ū�

�2

�2�U���
��2 + �1 − T���1

− ���2� ,

	� �A�

�t
+

��

��
� = �1 − T�Im
Ū��̄

��U���
��

� − 
ef f
2 1

�

�hz

��
,

	� �A�

�t
+

1

�

��

��
� = �1 − T�Im
 Ū��̄

�

��U���
��

� + 
ef f
2 �hz

��
.

�8�

Disregarding the nonlinear term, the first TDGL equation
written as above resembles a diffusion equation, except by
the fact that the Laplacian appears with different weights.
The weights depend locally on the components of the auxil-
iary field U. Written like in Eq. �8�, the TDGL equations are
gauge invariant, that is, they do not change their form under
any transformation ��=�ei
, A�=A+�
, and ��=�
−�
 /�t. This is a very important point for any discretization
procedure of the TDGL equations. Otherwise, we may obtain
nonphysical numerical solutions. In what follows, we will
work in the zero-electric potential gauge ��=0, since in the
present scenario no electrical field is considered. Other pos-
sible gauges have been discussed in detail in Ref. 16.

III. NUMERICAL METHOD

We will discretize the TDGL equations of Eq. �8� on a
circular sector as illustrated in Fig. 1. The mesh consists of
N��N� cells with size �a� ,a�� in polar coordinates. The cir-
cular sector has internal radius r and external R; � is its
angular width. Let ��i ,� j� be a vertex point in the mesh,
where �i+1=�i+a�, � j+1=� j +a� for all �1� i�N� ,1� j
�N�
; �1=r and �1=0; this particular choice for the initial
value of the angle does not imply a loss of generality since
the system is invariant under any rotation. The superconduct-
ing domain is comprehended by �SC= ��1+a� /2����N�

+a� /2,a� /2����N�
+a� /2
. The superconducting region is

surrounded by a thin superconducting layer of width a� /2 in
the radial direction conveniently detached from the super-
conductor. Both regions are inside the domain �= ��1��
��N�+1 ,0����N�+1
. We denote by ��SC the interface be-
tween the superconductor and the external superconducting
layer, and by �� the superconducting layer-vacuum inter-
face. The boundary conditions will be employed at the ��SC
interface rather than ��. The real interface is a

superconductor-vacuum ��. We introduce a very thin super-
conducting layer in between the superconductor and the
vacuum just as an artifact to avoid the divergence of the
derivative of the order parameter at the superconductor-
vacuum interface, although both regions consist of the same
superconduting material. This usual procedure is used in the
link variable formalism, not only to avoid divergence of the
derivative of the order parameter at the �� interface, but also
to obtain a discretization of the Ginzburg-Landau equations
which preserves the gauge invariance of these equations �see
Refs. 11 and 17 for more details�. The thinner the supercon-
ducting layer is, the better our approximation will be.

Let us define the following discrete variables.
�1� The vertex points

�i = r + �i − 1�a�, 1 � i � N� + 1,

� j = �j − 1�a�, 1 � j � N� + 1. �9�

The points ��i+1/2=�i+a� /2,�i+1/2=�i+a� /2� are called the
cell points. The points ��i+1/2 ,� j� and ��i ,� j+1/2� are the link
points in the radial and transversal directions, respectively
�see Fig. 1�.

�2� The order parameter

�i,j = ���i,� j� , �10�

for all �1� i�N�+1,1� j�N�+1
.
�3� The vector potential

A�,i,j = A���i+1/2,� j�, A�,i,j = A���i,� j+1/2� , �11�

for all �1� i�N� ,1� j�N�+1
 and �1� i�N�+1,1� j
�N�
, respectively.

�4� The link variables

U�,i,j = Ū���i,� j�U���i+1,� j� = exp�− ia�A�,i,j� ,

U�,i,j = Ū���i,� j�U���i,� j+1� = exp�− i�ia�A�,i,j� , �12�

for all �1� i�N� ,1� j�N�+1
 and �1� i�N�+1,1� j
�N�
, respectively.

�5� The local magnetic field

hz,i,j = hz��i+1/2,� j+1/2� , �13�

for all �1� i�N� ,1� j�N�
.
In what follows, it will be important to define the follow-

ing discrete variable:

Li,j = exp�− i�
�D

A · dr� = exp�− i	
D

hz�d�d�� = exp�

− ia��i+1/2a�hz,i,j� , �14�

for all �1� i�N� ,1� j�N�
, where D is the domain of a
unit cell limited by a closed path �D. The use of Stoke’s
theorem and the midpoint rule for numerical integration have
been made. A simple inspection of Eq. �14� leads to

Li,j = U�,i,jU�,i+1,jŪ�,i,j+1Ū�,i,j . �15�

In Appendix A, by using this approach, and on using the
one-step forward-difference Euler scheme with time step �t,
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we descretized the TDGL equations. We find the following
recurrence relations for the order parameter and the link vari-
ables:

�i,j�t + �t� = �i,j�t� + F�,i,j�t��t ,

U�,i,j�t + �t� = U�,i,j�t�exp�−
i

	
FU�,i,j�t��t� , �16�

where the functions F�,i,j�t� ,FU�,i,j�t�, with �= �� ,��, are de-
fined in Appendix A.

Notice that Eqs. �16� were written in such a manner they
guarantee the link variables are unimodular functions. The
first recurrence relation runs for all interior vertex points of
�SC, that is, �2� i�N� ,2� j�N�
; the second ones run for
all link points in the interior of �, that is, �1� i�N� ,2� j
�N�
 for �=�, and �2� i�N� ,1� j�N�
 for �=�. At the
edge points of �, the values of the discrete variables will be
evaluated using the boundary conditions �see the next sec-
tion�.

There is a severe limitation on the choice of the time step
�t such that the recurrence relations converge. We have no-
ticed that the condition for stability is assured by the follow-
ing practical rule:

�t � min��2

4
,
�2	

4
2�, �2 =
2

1

a�
2 +

1

r2a�
2

. �17�

Notice that the stability is controlled by the size of the
smallest unit cell. The smaller the value of r, the more severe
the restriction on the time step becomes. Perhaps in this case,
it would be more convenient to use either a semi- or a full
implicit scheme to solve TDGL equations, which are usually
unconditionally convergent.

Let us now discuss the boundary conditions. Let n be a
unit vector normal to the ��SC interface and directed out-
ward to the domain �SC. We will assume that the normal
current density vanishes at the ��SC interface, that is,
D� ·n=0. By using Eqs. �4�, it can be shown that the discrete
implementation of this condition is as follows:

�1,j = U�,1,j�2,j, �N�+1,j = Ū�,N�,j�N�,j , �18�

�i,1 = U�,i,1�i,2, �i,N�+1 = Ū�,i,N�
�i,N�

. �19�

The first two equations run for all values of �2� j�N�
, and
the second ones for all values of �2� i�N�
. At the corner
vertex points of the domain � it is not necessary to run the
recurrence relations �16�.

These last four equations update the values of the order
parameter at any vertex point at the �� interface. The values
of the link variables at this interface will be updated by using
the fact that the z component of the magnetic field is con-
tinuous at the interface ��SC, that is, hz,1,j =hz,N�,j =hz,i,1

=hz,i,N�
=H, which is the external applied magnetic field.

Consequently, from Eqs. �14� and �15�, the link variables are
updated according to

Li,j = exp�− ia��i+1/2a�H� , �20�

which runs for all edge points at the interface ��.
In Appendix B we also present the derivation of some

very important physical quantities like the free energy, mag-
netization, and vorticity.

IV. RESULTS AND DISCUSSION

The recurrence relations derived in the previous section
were implemented as follows. We started from the Meissner
state, where �=1 and U�=U�=1 everywhere as the initial
condition. Then we let the time evolve until the system
achieves the stationary state. This is done by keeping the
external applied magnetic field H constant. Next, we ramp up
the applied field by an amount of �H. The stationary solution
for H is then used as the initial state to determine the solution
for H+�H, and so on. Usually we started from zero field and
increased H until superconductivity is destroyed. As a crite-
rion for termination of the simulation, we monitored the
Gibbs free energy as a function of H. When the value of this
quantity changes its sign, then the transition from the super-
conducting to the normal state sets in.

We use the following criterion to obtain the stationary
state: if the highest difference ���t��−���t+�t��, for any ver-
tex point in the mesh, is smaller than a certain precision �,
then we go over to the next field. We have worked with a
precision of �=10−6 for �=45° and �=10−5 for the other
angular widths. The reason for taking different precisions is
as follows. The initial state is taken as the stationary state
from the previous value of the applied magnetic field. So,
along the simulation may there be accumulation of error as
the magnetic field increase. Since the SN transition field is
higher for smaller angular widths, as will be seen in what
follows, to overcome any divergence difficulties we set a
higher precision for these cases.

The parameters used in our numerical simulations were

=0.28, which is a typical value for thin Al samples,2 d
=0.1, T=0, and 	=1. The internal radius and the area of the
circular sector were taken fixed for any value of angular
width �. We used r=1 /� and S=16� for the area, such that
the external radius is given by R=�32� /�+r2. The reason
for taking these parameters as such is because it makes pos-
sible the comparison between our results and previous ones
�see Ref. 9 and references therein�. The size of the mesh
varied according to the value of �. As a criterion we have
taken the length of the largest unit cell no larger then 0.25
�0.25. Since the order parameter varied most significantly
over a distance ��T� �in real units�, we are certain of not
losing this variation within this criterion. We ramp up the
applied magnetic field, typically in steps of �H=10−3.

In Fig. 2 we present the magnetization versus external
applied magnetic field curves for several values of the angu-
lar width. These pictures present a typical profile of a mag-
netization curve of a mesoscopic superconductor. It presents
a series of discontinuities, in which each jump signals the
entrance of more vortices into the sample. Notice that the
lower critical field does not vary with the shape of the circu-
lar sector. From this, the immediate conclusion is that it de-
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pends only on the area but not on �. In other words, our
results indicate that, should we change the area to another
value, the lower critical field would also change its value, but
it would be the same for any value of �. In fact, we deter-
mined the values of the lower critical field for a larger area
which seems to corroborate this conclusion. In Fig. 3, we
plotted Hc1�0� as a function of � for two different values of
the area. As one would expect, the first nucleation field is
slightly lower for the larger area. However, the fluctuations
about the average value for a fixed area are very small in
both cases.

Our result seems to be in good agreement with that found
in Ref. 9 where numerical simulations were performed in
three different geometries: disk, square, and triangle, having
the same area, and using the same parameters as in the
present contribution. The authors of this reference find that
the magnitude of the lower critical field is the same for the
disk and the square, and slightly larger for the triangle. Since
we have the freedom to deform the circular sector, it should
be expected a similar behavior for the lower critical field, as
indeed it is indicated by Fig. 2. A possible explanation for the
invariance of the lower critical field with the geometry is the
following. The barrier for the nucleation of the first vortex
inside the sample is related to the shielding currents. �For
more details on this issue see Ref. 18.� Since the shielding
currents depend on the area of the superconductor, one
would expect the lower critical field to be the same for any
geometry having the same area.

Another interesting feature present in the pictures of Fig.
2 is that the SN transition field Hc3�T� is approximately the
same for all angles greater than 90°. However, for smaller
values of �, this critical field becomes significantly larger.
Indeed, in Ref. 3 Hc3�T� was calculated numerically for a
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FIG. 2. The magnetization curve as a function of the external applied magnetic field for four values of the angular width of the circular
sector. Each jump in the magnetization indicates a phase transition. The corresponding configuration for each phase is indicated in Table I.

40 60 80 100 120 140 160 180
1.05

1.06

1.07

1.08

1.09

1.1

1.11

1.12

1.13

Θ (Degrees)

H
c1

(0
)/

H
c2

(0
)

FIG. 3. The values of the lower critical field for two distinct
values of the area: �, S=16� and �, S=32�. The horizontal line
indicates the average value of the nucleation field. The standard
deviations from the averages are 9.5�10−3 and 6.2�10−3,
respectively.
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wedge. The area they used for the wedge is 2.24 larger than
the one we used here. They found that their results fit quite
well into the following expression:

Hc3�T�
Hc2�T�

=
�3

�
�1 + 0.148 04�2 +

0.746�2

�2 + 1.8794
� , �21�

where this expression is valid for any value of T, although
our results are obtained for T=0. In fact, Hc3�T� is approxi-
mately the same for a disk and a square of equivalent area.9

In Fig. 4 we depict both the above expression and what
we have found for the nucleation field Hc3�0� as a function of
� /�. As can be seen from that figure, for large angles, the
nucleation field is larger in the geometry we consider. This
suggests that, had we diminished the area of the circular
sector, this difference for large angles would have increased.
Nonetheless, for small angles all curves should collapse into
a single curve, which corresponds to the asymptotic behavior
Hc3�T� /Hc2�T�=�3 /� determined in Ref. 3. This suggests
that the superconductor behaves as a unidimensional system
as � becomes small, no matter what the area is. Indeed, we
determined Hc3�0� for a smaller area and found that the val-
ues of the nucleation field are slightly larger, but this differ-
ence tends to diminish for small � �see Fig. 4�.

We also investigated the topology of the order parameter.
Before going any further, let us establish the criterion we
used to distinguish a single vortex from a giant vortex state.
A giant vortex is nucleated as two or more vortices collapse
into a single vortex in which all of them have, rigorously, a
common core center. This was the criterion we used through-
out this work which in a certain sense is more rigorous than
others used in the literature �see, for instance, Ref. 9� where
a giant vortex occurrence is accepted only when a local
maximum of the order parameter between two minimums is
lower than 0.5% of the maximum Cooper-pair density in the
sample.

To describe an N vortex state we used the following no-
menclature. We denote by NsS a multiple vortex configura-
tion formed by Ns single vortices. A single giant vortex of
vorticity Ng is denoted by 1GNg

. For example, the 4S1G2

state is formed by four single vortices and a double quan-
tized giant vortex.

In all geometries we have considered, usually it occurs for
transitions either from N to N+1 or from N to N+2 vortices.
In Figs. 5 and 6 we depict ��� for �=180° and 45° respec-
tively, and two stationary states with different values of H.
We have chosen transitions where we could have the forma-
tion of a giant vortex. As can be seen in these figures, we
have the transitions 9S→4S1G6 ��=180° � and 6S
→5S1G3 ��=45° �. On building these pictures we have used
the highest resolution as possible in order to detect any indi-
viduality in the vortex configurations. Beyond some critical
resolution, the pictures do not present a change.

On the other hand, if we look at the same pictures in a
logarithm scale, we still see that the core centers of the vor-
tices occupy different positions. So, within this criterion, we
cannot affirm that a giant vortex has been nucleated. For
higher vorticity, we have not observed any giant vortex ei-
ther. A very different scenario takes place in disks, squares,
and triangles even using the same parameters as in the
present work.9,19 Maybe, for smaller areas, a giant vortex
could be formed; we have not tested this possibility. All pos-
sible configurations are summarized in Table I up to N=11.
Notice that the vortices are always symmetrically distributed
along the mediatrix.

V. SUMMARY

In summary, an algorithm has been developed for solving
the Ginzburg-Landau equations for circular geometries. This
will probably make it much easier to extend the �U method

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

Θ/π

H
c3

(0
)/

H
c2

(0
) FIG. 4. The nucleation field as

a function of the angular width of
the circular sector. The solid line
corresponds to Eq. �21� taken
from Ref. 3 and the open circles
and squares are the results found
in the present simulation for two
distinct areas: �, S=16� and �,
S=8�.
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for other geometries in addition to the circular and rectangu-
lar ones. Furthermore, we have applied the algorithm to the
circular sector and have found several configurations for the
vortex state in this geometry. Also, the superconducting
nucleation field has been evaluated. We have presented some
evidence that, as we diminish the area of the supercondutor,

the nucleation field increases. However, as the angular width
goes to small values, this field exhibits a universal behavior
regarded to the area.
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APPENDIX A: DISCRETIZATION OF THE TDGL
EQUATIONS

The TDGL equations can be discretized by calculating
them at the appropriate points according to the rules estab-
lished in Fig. 1. This can be done by using the central dif-
ference approximation for the derivatives which is second
order accurate in �a� ,a��. A tedious, however, straightfor-
ward calculation, leads us to the following discrete version
of the TDGL equations of Eq. �8�:

��i,j

�t
= F�,i,j ,

	
�A�,i,j

�t
= �1 − T�Im
 �̄i,jU�,i,j�i+1,j

a�

� − 
ef f
2 �hz,i,j − hz,i,j−1

�i+1/2a�
� ,

	
�A�,i,j

�t
= �1 − T�Im
 �̄i,jU�,i,j�i,j+1

�ia�

� + 
ef f
2 �hz,i,j − hz,i−1,j

a�
� ,

�A1�

where

F�,i,j =
�i+1/2�U�,i,j�i+1,j − �i,j� + �i−1/2�Ū�,i−1,j�i−1,j − �i,j�

�ia�
2

+
U�,i,j�i,j+1 − 2�i,j + Ū�,i,j−1�i,j−1

�i
2a�

2 + �1 − T��i,j�1

− ��i,j�2� . �A2�

From the numerical point of view, it is more convenient to
evaluate the link variables rather than the vector potential.
From Eqs. �12�, we can easily verify that

�A�,i,j

�t
= −

Ū�,i,j

ia�

�U�,i,j

�t
,

�A�,i,j

�t
= −

Ū�,i,j

i�ia�

�U�,i,j

�t
. �A3�

In addition, from Eq. �14�, we can write, accurate to second
order in �a� ,a��,

hz,i,j =
Im�1 − Li,j�
a��i+1/2a�

, �A4�

where Li,j is given by Eq. �15�. Upon introducing Eqs. �A3�
and �A4� into the second and third equations of Eq. �A1� we
obtain the following recurrence relations:

�U�,i,j

�t
= −

i

	
U�,i,jFU�,i,j,

�U�,i,j

�t
= −

i

	
U�,i,jFU�,i,j ,

�A5�

where

FU�,i,j = Im
�1 − T��̄i,jU�,i,j�i+1,j + 
ef f
2 �Li,j − Li,j−1

�i+1/2
2 a�

2 �� ,

FU�,i,j = Im
�1 − T��̄i,jU�,i,j�i,j+1 + 
ef f
2 �i

a�
2� Li−1,j

�i−1/2
−

Li,j

�i+1/2
�� .

�A6�

Finally, on using the one-step forward-difference Euler
scheme with time step �t, we obtain the recurrence relations
�16�.

APPENDIX B: PHYSICAL QUANTITIES

The topology of the superconducting state is usually illus-
trated by ���2. This quantity can be determined from the out-
come of the recurrence relations previously derived. Other
important physical quantities used to describe the vortex
state are the Gibbs free energy, the magnetization, and the
vorticity. In what follows we will derive an expression for
each of these physical quantities.

�1� The kinetic energy.

Lk = �1 − T� 		
�SC


� ��U���
��

�2

+ � 1

�2

��U���
��

�2��d�d� = �1

− T��
i=2

N�

�
j=2

N� 	
�j−1/2

�j+1/2 	
�i−1/2

�i+1/2 
� ��U���
��

�2

+ � 1

�2

��U���
��

�2��d�d� = �1

− T��
i=2

N�

�
j=2

N� � 1

2�ia�
2 ��i+1/2�U�,i,j�i+1,j − �i,j�2

+ �i−1/2�U�,i−1,j�i,j − �i−1,j�2� +
1

2�i
2a�

2 ��U�,i,j�i,j+1 − �i,j�2

+ �U�,i,j−1�i,j − �i,j−1�2��a�a��i. �B1�

�2� The condensation energy.

TABLE I. The sequence of vortex configurations for four differ-
ent angles of the circular sector. The nomenclature used is explained
in the text. The configurations in brackets correspond to what we
obtain not using a logarithm scale.

N 1800 1350 900 450

1 1S 1S 1S

2 2S 2S 2S

3 3S 3S 3S

4 4S 4S 4S

5 5S 5S 5S

6 6S 6S 6S

7 7S 7S 7S�5S1G2�
8 8S 8S�6S1G2� 8S�5S1G3� 8S�5S1G3�
9 9S 9S�4S1G5� 9S�5S1G4� 9S�4S1G5�
10 10S�4S1G6� 10S�4S1G6� 10S�3S1G7� 10S�5S1G5�
11 11S�5S1G6� 11S�2S1G9� 11S�3S1G8� 11S�4S1G7�
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Lc = �1 − T�2 		
�SC

���2�1

2
���2 − 1��d�d� = �1

− T�2�
i=2

N�

�
j=2

N� 	
�j−1/2

�j+1/2 	
�i−1/2

�i+1/2

���2�1

2
���2 − 1��d�d� = �1

− T�2�
i=2

N�

�
j=2

N�

��i,j�2�1

2
��i,j�2 − 1�a�a��i. �B2�

�3� The field energy.

Lf = 
eff
2 		

�

hz
2�d�d� = 
eff

2 �
i=1

N�

�
j=1

N� 	
�j

�j+1 	
�i

�i+1

hz,i,j
2 �d�d�

= 
eff
2 �

i=1

N�

�
j=1

N� �Im�1 − Li,j��2

a�
2�i+1/2

2 a�
2 a��i+1/2a�. �B3�

The total Helmholtz energy is then given by L=Lk+Lc
+Lf. The Gibbs free energy can be obtained by a simple
modification in the field energy. Instead of hz

2 we would have
�hz−H�2, or �hz,i,j −H�2 in the discrete version. Notice that
the discrete TDGL equations could also be derived through
the following equations:

�1 − T�
��i,j

�t
= −

1

Ai

�L

��̄i,j

,

	
�A�,i,j

�t
= −

1

2A�,i

�L
�A�,i,j

, �B4�

where Ai=a��ia�, A�,i=a��i+1/2a�, and A�,i=a��ia�, which
are the areas surrounded by the vertex and link points, re-
spectively. In order to derive the discrete TDGL equations by
this means, it is essential to use the following relations:

�U�,i,j

�A�,i,j
= − ia�U�,i,j,

�U�,i,j

�A�,i,j
= − i�ia�U�,i,j , �B5�

which can be easily shown from Eqs. �12�.
The magnetization is 4�M =B−H, where B is the mag-

netic induction which is given by the spatial average of the
local magnetic field. We have

4�M =
1

A�
i=1

N�

�
j=1

N�

hz,i,jA�,i − H , �B6�

where A is total area of the circular sector.
The vorticity can be determined by integrating the phase

� in each unit cell of the mesh. We have

Ni,j =
1

2�
�

Ci,j

� � · dr, N = �
i=1

N�

�
j=1

N�

Ni,j, �B7�

where Ci,j is a closed path with the lower left and upper right
corner at �i , j� and �i+1, j+1�, respectively. In all of our
numerical simulations described previously, we calculated N
in order to make sure that the number of vortices agrees with
what we see on the topological map of the order parameter.
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